An Incremental Growing Neural Network and its Application to Robot Control

نویسندگان

  • A. Carlevarino
  • R. Martinotti
  • Giorgio Metta
  • Giulio Sandini
چکیده

Control A. Carlevarino, R. Martinotti, G. Metta and G. Sandini Lira Lab – DIST – University of Genova Via Opera Pia, 13 – 16145 Genova, Italy E-mail: [email protected] Abstract This paper describes a novel network model, which is able to control its growth on the basis of the approximation requests. Two classes of self-tuning neural models are considered; namely Growing Neural Gas (GNG) and SoftMax function networks. We combined the two models into a new one: hence the name GNG-Soft networks. The resulting model is characterized by the effectiveness of the GNG in distributing the units within the input space and the approximation properties of SoftMax functions. We devised a method to estimate the approximation error in an incremental fashion. This measure has been used to tune the network growth rate. Results showing the performance of the network in a real-world robotic experiment are reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design

The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...

متن کامل

Adaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot

The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...

متن کامل

adaptive control of two-link robot manipulator based on the feedback linearization method and the proposed neural network

This paper proposes an adaptive control method based on the feedback linearization technique and a proposed neural network,  for tracking and position control of an industrial manipulator. At first, it is assumed that the dynamics of the system are known and the control signal is constructed  by the feedback linearization method. Then to eliminate the effects of the uncertainties and external d...

متن کامل

A Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot

Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS) parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required ...

متن کامل

Designing Path for Robot Arm Extensions Series with the Aim of Avoiding Obstruction with Recurring Neural Network

In this paper, recurrent neural network is used for path planning in the joint space of the robot with obstacle in the workspace of the robot. To design the neural network, first a performance index has been defined as sum of square of error tracking of final executor. Then, obstacle avoidance scheme is presented based on its space coordinate and its minimum distance between the obstacle and ea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000